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We continue our investigation of a model of random walks on lattices with two 
kinds of points, "black" and "white." The colors of the points are stochastic 
variables with a translation*invariant, but otherwise arbitrary, joint probability 
distribution. The steps of the random walk are independent of the colors. We 
are interested in the stochastic properties of the sequence of consecutive colors 
encountered by the walker. In this paper we first summarize and extend our 
earlier general results. Then, under the restriction that the random walk be sym- 
metric, we derive a set of rigorous inequalities for the average length of the sub- 
walk from the starting point to a first black point and of the subwalks between 
black points visited in succession. A remarkable difference in behavior is found 
between subwalks following an odd-numbered and subwalks following an even- 
numbered visit to a black point. The results can be applied to a trapping 
problem by identifying the black points with imperfect traps. 

KEY WORDS: Random walks; inhomogeneous lattice; colored points; 
average length of successive runs; ergodic theorems; perfect and imperfect traps. 

1. I N T R O D U C T I O N  

In  a p r e v i o u s  p a p e r  (1) we h a v e  i n t r o d u c e d  a m o d e l  of  a r a n d o m  wa lk  on  a 

la t t ice  of  wh ich  the  p o i n t s  can  ca r ry  two  dif ferent  co lors ,  " b l a c k "  and  

"whi t e . "  T h e  co lors  a re  (no t  necessar i ly  i n d e p e n d e n t )  f rozen - in  s tochas t i c  

var iables .  W e  h a v e  o b t a i n e d  r i g o r o u s  resul ts  for a n u m b e r  o f  s tochas t i c  

p rope r t i e s  of  the  s equence  o f  c o n s e c u t i v e  co lo r s  e n c o u n t e r e d  by the  w a l k e r  

whi le  s t epp ing  t h r o u g h  the  lat t ice.  T h e  m o d e l  m a y  serve  to desc r ibe  ce r t a in  

t r a n s p o r t  p rocesses  in d i s o r d e r e d  med ia ,  such  as the  d i f fus ion and  t r a p p i n g  
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of "particles" in a medium with static traps. Our aim is to obtain results 
which are valid for a broad range of different types of diffusion and dis- 
order, and therefore we have kept the model as general as possible. In 
addition, this model is an example of a doubly stochastic process which we 
feel is interesting in its own right. 

The definitions are as follows. Consider an infinite d-dimensional lat- 
tice L and suppose that the points of L are colored black and white 
according to a given joint probability distribution N. ~ is assumed to be 
translation invariant. The probability that a given point I E L is black is 
thereby independent of l; we denote it by q and assume that q > 0. Next 
consider a random walk on L, starting at the origin and proceeding 
according to a given probability distribution p for single steps. It is 
assumed that p is independent of the coloring of L (and translation 
invariant as usual). 

A color distribution N may be defined by attributing probabilities to 
local configurations of black and white points, i.e., partitions of finite sub- 
sets of L into a set of black points and a set of white points with the colors 
of points outside the subset unspecified. If this is done in a consistent way, 
these probabilities determine a unique probability distribution for the 
infinite lattice (as is guaranteed by the so-called extension theorem; see 
Ref. 2, Vol. 2, p. 118). Two local configurations that are obtained from 
each other by a translation must be assigned equal probability in order to 
acquire translation invariance. ~ is otherwise completely arbitrary. Exam- 
ples are (see Ref. 1): (i) the random distribution; (ii) (translation-invariant) 
periodic distributions; (iii) the uniform distribution; (iv) (translation- 
invariant) grand canonical distributions (Gibbs states). 

The step distribution p may be chosen to be any function p: L ~ 
with p(l)>10 and Y4~Lp(l)= 1/where p(l) is the probability of a step over 
the lattice vector l; p assigns probabilities to the individual steps of the 
walker, independent of the colors by assumption and, of course, indepen- 
dent of previous steps. 

We are interested in the walker's visits to black points, called "hits," 
more in particular in the stochastic properties of the number of steps made 
before the first hit and between successive hits. A subwalk between suc- 
cessive hits we call a run and, for convenience, we call the subwalk to the 
first hit the zeroth run. In Ref. 1 we have considered the following two 
stochastic processes: 

(0) The process (no, nl, n2,...), where ni is the length of the ith run, 
i>~0(no~>0 ;ni>~l,  i~>1). 

(1) The process (0, nl,  n2,...) obtained from (0) by the restriction 
that n o be zero, i.e., that the origin be black. 
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Both processes are entirely determined by the two independent 
probability distributions ~ and p. The number of black points visited may 
be finite, i.e., it may happen that only a finite number of runs is completed. 
Averages such as (n i )  will, however, be understood as conditional 
averages given that the ith run in completed (i.e., given that at least i +  1 
black points are visited). Furthermore, averages in process 1 are in turn 
conditional averages in process 0 given that no = 0. Nevertheless, we prefer 
to speak of 0 and 1 as separate processes; accordingly we denote averages 
by ( . . . )o  and ( . . . )1 ,  respectively. 

In Ref. 1 we have shown, using a simple "renewal-type" argument (of 
the type used, e.g., in Ref. 2, Vol. 1, Chap. 13) in combination with our 
assumption of translation invariance, that the stochastic properties of 
either process can be expressed rigorously in terms of those of the other. 
From this relationship we have derived several general properties. Here is a 
list of the main results: 

A. In process 0 the probability that a first black point is hit at step no 
is a monotone nonincreasing function of no. 

B. Let f, ,  i>~ 0, be the probability that in process 0 at least the ith 
run is completed. Let Pi, i>~l, be the corresponding probability in 
process 1. Then 

f i = f o ,  for all i~> 1 (1.l) 

p , =  1, for all i~> 1 (1.2) 

C. Process 1 is stationary; hence the stochastic variables ni are iden- 
tically distributed in this process. Furthermore, each of the moments of n l 
in process 1 can be linearly expressed in terms of lower moments of no in 
process 0. In particular, 

( n l )  1 =foq  -1 (1.3) 

(n2>~=foq  ' ( l + 2 ( n o > o )  (1.4) 

D,  

terms of correlations in process 1. In particular, 
In process 0 the moments of ni with i~> 1 can be expressed in 

E. 

<ni)o = (n ,n i+ l> l /<n l )  1, i>~ 1 

In process 0 the following inequalities hold: 

(no>o >/l(foq - 1 -  1) 

(no)o>~�89 for all i>~l 

(1.5) 

(1.6) 

(1.7) 

822/39/1-2 2 
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In process 0 the ne with i >~ 1 are in general not identically distributed. 
Furthermore, both in process 0 and in process 1 the lengths of the suc- 
cessive runs are in general correlated. This stems from the fact that different 
black points may have different "environments," which is the reason why it 
is difficult to study the processes in detail. Process 0 is physically the more 
interesting one and has our main interest. Process 1 serves more or less as 
an "auxiliary" process. 

The above remarks summarize the results of Ref. 1. The outline of this 
paper is as follows. In Section 2 we study the probability fo in more detail. 
The result is: 

F. In process 0 

f0 = 1 - ~ [ L  is white] (1.8) 

where L is the smallest sublattice of L to which the random walk is con- 
fined. 

The results obtained thus far are valid for arbitrary L, ~ ,  and p and 
are therefore necessarily of a modest nature. Stronger results can be 
obtained as more specific assumptions are introduced. In Section 3, which 
constitutes the main part of the paper, we focus on one such specific 
assumption, viz. that the random walk is symmetric, i.e., that p(l)= p ( - l )  
for all I. Under this assumption we derive the following set of inequalities, 
assuming (without loss of generality) that (a) the color distribution is 
extremal (i.e., 2 cannot be decomposed into two distinct translation- 
invariant components), (b) the random walk covers the whole lattice (i.e., 
L=L) ,  so that f0 = 1: 

G. For  the zeroth run in process 0 

(no)o  >~ (1 - q)Z/q(1 -- X) (1.9) 

where X :=  Prob[n l  = 1 [no = 0] = q - 1  Y ' , l eL  p(l)N[0 and l are black]. 

H. For  the higher runs in process 0 let Ai:= ( n i ) o - q  -1. Then 

A I ) A 3 / > z I 5 / > Z I T )  "'" 9 0  

z~ 1 ~ IA21, A3 ~ IA4], A5 ~ IA61,... (1.10) 

We further show: 

I. For  periodic color distributions A i ---+ 0 as i ~  o% exponentially 
fast, irrespective of the random walk. For  general color distributions decay 
is expected to occur in most cases, but it may be slower than exponential. 
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In Section 3.1 we first consider periodic color distributions. The unit 
cell of the periodic pattern will be completely arbitrary. The arguments 
used are essentially probabilistic and are based on simple matrix algebra. 
The derivation presented for this case will set the stage for the extension to 
arbitrary (translation-invariant) color distributions, which is given in Sec- 
tion 3.2 and requires the use of certain ergodic theorems. In Section 4 we 
apply our results by identifying the black points with imperfect traps. Sec- 
tion 5 is devoted to a discussion, including some examples and a few 
references to related results in the literature. 

The reader who is not interested in the derivation of F-I  may wish to 
skip Sections 2 and 3 and go straight to Section 4. 

When in the following we speak of runs we shall mean runs in process 
0, unless stated otherwise. As in the previous paper, the assumption of 
translation invariance will play a key role in the calculations. 

2.  T H E  P R O B A B I L I T Y  fo 

The probabili tyfo that the zeroth run is completed plays an important 
part in Ref. 1 and appears in many of the formulas. Of course, this 
probability may depend on L, ~ ,  and p. In this section we shall study fo in 
more detail. 

Let us use the symbol P,(1) to denote the probability that the walker 
visits point 16 L at step n. Let further 

L + := {leL:P,(I)>O for some n>~0} 

L + is the set of all points that can be reached by the walker in a finite 
number of steps; it depends on p. We shall first prove that 

f0 = 1 - N I L  + is white] (2.1) 

ProoL When L § is white there are no black points that the walker 
can reach and the zeroth run cannot be completed (no = oo). To prove 
Eq. (2.1) we must show that no< oo with probability 1 when it is given 
that L § contains a black point. 

The plan of the proof is to use Eq. (1.2). Now Eq. (1.2) states that 
given that the origin is black the walker will with probability 1 hit 
arbitrarily many black points, or in other words, there exists with 
probability 1 an infinite sequence of steps at which the walker hits a black 
point. By the translation invariance of ~ it immediately follows that also 

t h e  following is true: given that l is black there exists with probability 1 an 
infinite sequence of step numbers k0 (=0  ) < k l  <k2  < ... such that lkj+ l is 
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black, where In stands for the point visited at step n. These step numbers 
are, of course, stochastic variables. It is important that the above statement 
is true for all l E L. 

Next, let I ~ L  + and let m be the smallest integer with P,~(1)>O. 
Assume that l is black and let m o ( = O ) < m l < m 2 < . . ,  be the infinite 
sequence of the smallest elements of (kj)j~>0 with the property that 
m j + l - m j ~ m  for all j. We define the following sequence of events: 
Ej, j>~O, is the event {mi<oo for i<~j and lmj+m=lmj+l}, or in other 
words, the event that the first j +  1 step numbers in the sequence (mj)~>o 
indeed exist and that the visit to l,,~ is followed by a visit to the black point 
Imj+l at the mth subsequent step. Clearly, the event Ej has probability 
pj = Pro(l) > 0, independent ofj .  Moreover, since mj+ ~ - mj >/m the events 
are independent. It follows from the second Borel-Cantelli lemma ~2) that, 
as ZiP j-= 0% with probability 1 arbitrarily many among the events Ej will 
O c c u r .  

We have now reached the following result: given that some point of 
L-- is black the walker will with probability 1 hit arbitrarily many black 
points. But, trivially, this implies that f~= ~ [ L  + contains a black point] 
for all i>~0. Equation (2.1) is the special case for i = 0  (note that from 
Eq. (1.1) we already knew that all the f~. are equal). This completes the 
proof. | 

Equation (2,1) may be slightly strengthened. Let 

L : =  { l ~ L : l = l ' - l "  for some l', l " ~ L  + } 

L is the smallest sublattice of L that contains L + (see Ref. 3, p. 15); it is 
the lattice on which the random walk "actually takes place." In many cases 
L = L, but not in all. We shall now prove that 

f0 = 1 - ~ [ L  is white] (2.2) 

Pro oL Since L + ~ L it follows that ~ [L is white] ~< ~ [ L  + is white]. 
To prove Eq. (2.2) we must show that the equality sign holds. To do so we 
shall again use the translation invariance of ~.  

The proof will depend on the following remarkable property. Let 
L ' : =  {l k}, k~ 77, be any line of points in L, i.e., lk = la +kIb for some 
la, Ib ~ L with l b ~ O. If L' contains one black point then with probability 1 
it contains infinitely many, extending in both directions. Indeed, let 
ck := ~[ Ik  is black, lk, is white for all k ' >  k]. Then we have ~ [ L '  contains 
a black point and a white positive half-line] =~2kEzCk. NOW obviously 
Zk ~ z ck ~< 1. By the translation invariance of ~,  however, c~ is independent 
of k and so it must be that ck = 0. Hence Zk~ zck = 0, which proves that if 
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L' contains one black point it contains with probability 1 infinitely many 
on the positive half-line k >~ 0. For  the negative half-line the argument, of 
course, runs the same. This proves the statement. 

We shall use the above-mentioned property in combination with some 
elementary properties of the structure of L +. When L + = L  there is 
nothing to prove as then Eqs. (2.1) and (2.2) are identical. For  the rest of 
the proof we shall therefore assume that L+~  a L. We want to show that 
~ [ L  + is w h i t e ] -  ~ [ L  is white] = ~ ' [L  + is white, L\L  + contains a black 
point]  = 0. 

Let us begin by specializing to the case d =  1. We may assume that 
L =  L ( = Z ) ,  since it will be clear that there is no loss of generality in doing 
so. (Note that the degenerate random walk with p ( 0 ) =  1 has L + = L = {0} 
and is therefore excluded by our assumption that L + r  Let 
_r := {l~L: p(1)>0}. L + is the set of all finite sums of elements of X (i.e., 
L + is the additive semigroup generated by _r). Suppose first that p(1)= 0 
for l <  0. Then all elements of L + are nonnegative. Because L + is not con- 
tained in any proper sublattice of 77, the greatest common divisor of the 
elements of _r is 1. This implies that l e L + for l sufficiently large, so that 
L + contains a positive half-line. It now follows that ~ [ L  + is white, L\L  + 
contains a black point]  ~< N [ Z  contains a black point and a white positive 
half-line] =0 ,  which is the required equality. When p(l)=0 for / > 0  the 
result is the same. When, finally, _r has both positive and negative elements 
it is readily seen that L + = L ,  which is the trivial case excluded. This 
proves Eq. (2.2) for d =  1. 

The proof for d~>2 follows almost as a corollary. L + may have a 
variety of forms depending on L and p, but since L and N are completely 
arbitrary there is again no loss of generality in assuming that L = L. To get 
the desired result it now suffices to observe that for any point lE L there 
exists a line through l that has a half-line in common with L + (this derives, 
in fact, from a simple group-theoretical property). It follows that given that 
l is black there are with probability 1 infinitely many black points in L + 
Since I is arbitrary this again implies that ~ [ L  + is white, L\L  + contains a 
black point]  = 0, which completes the proof of Eq. (2.2). l 

Equation (2.2) is a strong result: once it is known that there is some 
black point in L it follows that with probability 1 some black point is hit. 
For recurrent random walks this is not surprising, for in this case always 
L + = L  and each point of L + is hit with probability 1 (see Ref. 3, p. 19), 
but for transient random walks it is. It should be emphasized, however, 
that the generality of Eq. (2.2) is due entirely to the translation invariance 
of ~.  The proof shows that L is either white or contains infinitely many 
black points extending in all directions. This property explains some of the 



22 den Hollander and Kasteleyn 

background of Eqs. (1.2) and (2.2). In Section 3.2 we shall take a closer 
look at the effect of the translation invariance on the coloring of L and 
show that with probability 1 an "asymptotic density" of black points exists. 

From Eq. (2.2) it follows that in almost all cases of physical interest 
f0 = 1. Indeed, when the random walk is aperiodic (in the sense of Spitzer, 
Ref. 3, p. 20) we have L = L (by definition), in which case fo = 1 if the 
possibility that L is white has zero probability. For the random dis- 
tribution f0 = 1 if only we exclude the degenerate random walk which has 
f o = q  (in all other cases iLl = 00). It will be clear that when L # L  the 
problem is in a sense "ill posed" and, instead of ~ ,  one may then as well 
consider the restriction of ~ to L, which is obviously translation invariant 
on L. 

Finally, Eq. (2.2) shows that cases with f0 < 1 are in a sense nothing 
but trivial extensions of cases with fo = 1. Assume L = L. If f0 < 1 there is a 
positive probability that L is white, but then it is always possible to reduce 
the problem by writing ~ as the (unique) convex linear combination of two 
translation-invariant color distributions 5 ~' and ~" ,  viz. ~ = f o ~ ' +  
(1 - f o ) ~ " ,  with ~ ' [ L  is white] = 0  and ~"[-L is white] = 1. Since we are 
interested in completed runs only, ~ "  is the "irrelevant" part that does not 
contribute to the averages in our model. ~ ' ,  on the other hand, covers all 
relevant events and thus one may reduce the problem by "scaling" ~ to ~ ' .  
This also explains why the probabilities q and f0 always appear in the com- 
bination fo/q: for ~ '  we have the corresponding probabilities q ' =  q/fo and 
f~ = fJ fo  = 1, and q' is the "effective" probability that a point is black once 
the problem is reduced by scaling. 

In the following we shall assume, for reasons which will become clear 
later, that ~ [ L  is black] = 0. By the same argument it will be clear that 
this minor restriction involves no loss of generality. 

3. RIGOROUS INEQUALITIES FOR 
SYMMETRIC RANDOM WALKS 

We shall henceforth center interest on the moments (ni)o, i~>0. 
Whereas the probabilities f~. equal 1 for practically all choices of L, ~,  and 
p, these moments depend strongly on this choice. 

As observed in Ref. 1, one may derive from Eqs. (1.3)-(1.5), noting 
that (n~) i  ~> (n l )~  and (nlni+~) 1 "-~-<l/'2+n~+l)l~\n1 = (n2)  1, the following 
two inequalities mentioned in the Introduction: 

(no)o >~ �89 -1 - 1 ) (3.1) 

<no>o> ~ 1 ~(<ni>o-- 1), for all i~> 1 (3.2) 

These equations reduce to equalities for a few special cases. 
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With a simple scaling argument Eq. (3.1) may be slightly refined to 
obtain a stronger bound that depends on p: 

(no)o>~�89 ' -  l)/[1-p(O)] (3.1a) 

Unfortunately, however, it does not seem easy to do better in general. No 
upper bound was found in Ref. 1. Furthermore, for the runs with number 
i >t 1 no lower bound was found. Here it should be noted that for any given 
q>O [and p(0) fixed] one easily constructs simple (though somewhat 
extreme) examples where (n0)o can take arbitrarily large values or (ni)o  
can take any value >1 for given i~> 1. Thus Eqs. (3.1a) and (3.2) are by 
nature weak. One may expect stronger results if one places restrictions on 

or on p, or both. 
In the following we shall investigate the case where p is symmetric. We 

shall derive a set of rigorous inequalities which are valid for arbitrary 
(translation-invariant) color distributions. In Section 3.1 we first consider 
periodic color distributions. The extension to arbitrary color distributions 
is given in Section 3.2. 

3 .1 .  P e r i o d i c  C o l o r  D i s t r i b u t i o n s  

We begin with some definitions. A periodic color configuration is an 
arrangement of black and white points in L such that L can be divided into 
identical finite unit cells ("blocks") having identical (local) color con- 
figurations (in other words, there is a periodic pattern of colors). A trans- 
lation-invariant periodic color distribution is obtained by choosing an 
arbitrary periodic color configuration and assigning equal probability to all 
distinct configurations obtained from the chosen one by a translation. 
Examples are: (i) a strictly periodic distribution, where the black points 
form a sublattice of L and the (smallest) unit cell contains one black point; 
(ii) a pair-periodic distribution, where the (smallest) unit cell contains two 
black points. 

Consider first an arbitrary random walk p on L. We shall find it con- 
venient to change our point of view in two ways. First, since we are not 
interested in the positions at which the walker hits the black points we 
shall consider the random walk as taking place on a single unit cell with 
periodic boundary conditions imposed. This unit cell we denote by F,. 
Second, rather than sticking to our description with a fixed starting point 
for the walker and a translation-invariant color distribution, we shall fix 
the positions of the colors and, instead, allow the walker to start with equal 
probability at any point of L. The two descriptions are obviously 
equivalent; however, the latter description facilitates the discussion 
somewhat. 
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Let, then, N be the number of points in L, B = {/1,..., lt} c • the set of 
black points in L(1 ~< t < N) and W =  L \ B  the set of white points. L and 
the sets B and W are completely arbitrary. The results which we derive 
depend only on the existence of a unit cell. We may assume that t < N, i.e., 
that W is not empty, as otherwise the model is trivial. Of course, q = t/N. 

(I) T h e  Z e r o t h  Run.  The zeroth run plays a special role in that it 
may start either on a black or on a white point. If the walker starts in B 
then no = 0; if he starts in W then he can go through a succession of visits 
to points of W before hitting a point of B. We define 

Ptr : = probability of a step from l to l'; l, l' e 

(taking into account the periodic boundary conditions!). Further, let 
P :=  (Ptl')l,t'~ ~v denote the ( N -  t) x ( N -  t) matrix that has as elements the 
stepping probabilities between the white points. Of course, p depends on p 
as well as on the shape and the coloring of L. 

Now the average (n0)0 can be expressed in terms o f p  as follows. Let 

wn := probability that after n steps the walker has 
not yet hit a black point; n ~> 0. 

In order not to hit B the walker must start in W and make steps between 
points of W only. Recalling that with probability N 1 the walker may start 
at any point of L, we therefore have 

w~ = N  ~ ~ (P~)H,, n>jO (3.3) 
l , l ' ~ W  

We shall assume that f0 = 1. (This condition will be removed later.) Then 
w, ~ 0 as n ~ oo and by the monotonicity of w, 

(no)0  = ~ n(w~ 1--wn)= ~ wn (3.4) 
n = l  n = 0  

(see Ref. 2, Vol. 1, p. 265). Hence by Eq. (3.3) 

( n o ) o = N  -~ ~ ( l + p + p 2 +  .. .  ),r (3.5) 
l,l '~ W 

where 1 denotes the ( N - t ) x  ( N - t )  unit matrix. Note that p does not 
include any steps from W to B that are needed by the walker to reach a 
black point. These steps will appear in the calculation at a later stage. 

Obviously, ~c~wPtc<~ 1 for all l e  W. This property is expressed by 
saying that the matrix p is substochastic. The condition f0 = 1 implies that 
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strict inequality holds for at least one le  W (as otherwise the walker could 
never escape from W once he had started in W), and thus p is strictly sub- 
stochastic. Now it is well known that the eigenvalues of a (nonnegative) 
strictly substochastic matrix are all strictly smaller in modulus than unity 
(see, e.g., Refs. 4 and 5). Since we shall need this property later we give the 
proof. 

Proof. First assume that p is irreducible. Then the well-known 
Perron Frobenius theorem for nonnegative (square) matrices ~4,s) states 
that p has a real eigenvalue 21 > 0 with the following properties: 

(i) 21 is nondegenerate and with it are associated strictly positive left 
and right eigenvectors. 

(fi) 121 ~<21 for any other eigenvalue 2 ofp. 

(iii) 21 ~<maxl~ w(~l,~ wPtt,) and 21 ~<maxr~ w(7~t~ wPtr). 

By (iii) one has 2, ~< 1. However, ,~ = 1 is excluded, since i fx  := (xt)z~ w is 
the left eigenvector associated with 21 then ;r = 1 would imply that 

l ' ~ W  I l '  I ~ W  

and hence, by (i), that Zz,~ w P,, = 1 for all le  W. With (ii) this completes 
the proof for irreducible p. When p is reducible one can through a per- 
mutation of its rows and columns obtain a matrix of the form 

L~ 11 0 ] 
21 P22 

where P~l and 1922 are square matrices and Pll is either zero or irreducible. 
A repetition of the above argument shows that Pll cannot have an eigen- 
value 1, and the proof is completed by induction, l 

Thus it is seen that the condition )Co = 1 entails that 121 < 1 for all 
eigenvalues 2 of p. This in turn implies that the inverse of 1 - p  exists, so 
that we may write for Eq. (3.5) 

( n o ) o = N  l(e, ( l - p )  le) (3.6) 

where e denotes the (N- t ) -vec to r  with all elements equal to 1 and ( . , . )  
stands for the vector inner product. An important consequence of the 
existence of (1 _ p ) - i  is that ( n o ) o <  oe. 

So far we have not yet made any assumption concerning the random 
walk p. Even though Eq. (3.6) may not be a very suitable starting point for 
a detailed calculation of (n0)o, it will serve us here to obtain a bound in 
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the case of a symmetric random walk. Therefore we now, as promised, 
assume that p is symmetric, i.e., 

p ( l ) = p ( - l ) ,  for all I e L  (3.7) 

Equation (3.7) implies that the matrix p is symmetric (because a step and 
its reverse between any two points of L are equally probable by symmetry). 
Therefore all eigenvalues of p are real and it immediately follows that 1 - p  
is positive definite. This is the crucial property in the argument: we can now 
use a matrix inequality known as the Kantorovich inequality (see Ref. 6, 
p. 117 and Ref. 7, p. 69), which gives in our case 

(e, (1 - p ) e ) ( e ,  ( l - p )  -1 e)~> (e, e) 2 (3.8) 

and yields with Eq. (3.6) 

(no)o  >~ (e, e)2/N(e, (1 - p )  e) (3.9) 

The right-hand side of Eq. (3.9) is easy to evaluate. Indeed, we have 
(e, e) = N -  t and (e, pc) = Zt, t,~ wPlt, = N -  2t + 5~t,t,~ 8 Pu', where now the 
probabilities of steps to and from black points appear as we use that 
~ P t r  = 1 for all l' EL and Xr~zPtc = 1 for all l ~L ;  the latter equalities 
follow from the condition Zt~LP(1)= 1. Thus we finally arrive at 

(no)o  >~ (1 - q)2/q(1 -- X) (3.1o) 

with q = t iN and X : =  t-lZl.t,~Bptr . 
The condition f0 = 1 is easily removed. As observed at the end of Sec- 

tion 2, cases with f0 < 1 are trivial extensions of cases with f0 = 1, and a 
simple scaling argument has made it clear that in the general case q should 
be replaced by q/fo. In our setting L may be partitioned into two sets S' 
and S" from which the walker has probability 1 and 0, respectively, to 
reach B. S' is a sublattice of Z, (or a union of sublattices), B c S '  and 
f0 = IS'I/N. Because (n0)0  is a conditional average given that the zeroth 
run is completed, only those walks that start from S' will contribute. S' 
takes over the role of L,, fd = 1, and q ' =  IBI/[S'I = q/fo. Hence the general 
result is 

( n o ) o )  (foq - 1 -  1)2/foq 1(1 - X )  (3.11) 

Equation (3.11) is the first of a series of inequalities that are the object 
of this section. Note that the connection between process 0 and process 1, 
as seen in Eq. (1.4), reappears through X: X is the probability that nl = 1 
given that no = 0. Note further that X <  1. X depends on p as well as on the 
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shape and the coloring of L. In all cases, however, J;>~p(0) so that we 
have the weaker but simpler bound 

(no)o>~(foq - 1 -  1)2/foq 111 - p ( 0 ) ]  (3.12) 

which is to be compared with Eq. (3.1a). Here only the variable q appears 
as prominent and the dependence on ~ and p has disappeared nearly 
altogether. 

Equation (3.11) is stronger than Eq. (3.1a). When f 0 = l  this is 
obvious for q~<�89 For q > 1 7, on the other hand, note that X>~ 1 + 
( 1  - q-I ) [1  - p(0)] and hence (no)  o/> (1 - q)/[ 1 - p(0)]. Incidentally, the 
latter inequality is trivial. 

For several special cases Eq. (3.11) reduces to an equality, e.g., for any 
unit cell and a random walk that is "indifferent" with respect to L, in the 
sense that from any point of L the probability of a jump to any other point 
is 1 / ( N -  1) [here f0 = 1 and p(0) = 0]. An example is the case with L = Z, 
the strictly periodic distribution with q = 1/3 and the simple random walk 
(where steps to nearest-neighbor points have equal probability and other 
steps are not allowed). In the derivation of Eq. (3.11) we have used of p 
only its symmetry. Obviously, the translation invariance of p places 
additional restrictions on p (to be more specific, p is obtained from a cyclic 
stochastic matrix by deleting certain rows and columns). If this fact were 
exploited Eq. (3.11) could perhaps be strengthened further. 

(11) The Runs w i t h  Number  i~>1. The runs with number i~>l 
all start from a black point. This is, however, all that they have in common. 
As pointed out earlier, the ni are in general not independent nor are they 
identically distributed, to the effect that the moments (ni)0 for different i 
take different values. 

To study (n~)o, i~>l, we shall make explicit use of the relations 
between process 0 and process 1 established in Ref. 1. We define 

A~:= ( n i ) o - f o  q 1, i~>l (3.13) 

~ i :=  ( n l n i + l ) 1 - ( n l ) l ( n i + l ) l ,  i ~ l  (3.14) 

With Eqs. (1.3) and (1.5) we have 

A~=yi/foq -1 (3.15) 

This relation says that the amount by which (n i )  o differs from foq -1 is 
directly related to the correlation of the runs 1 and i +  1 in process 1. By 
studying 7~ we shall be able to get information about A~. In particular, since 
f o q - l > 0  either Ae and 7i have the same sign or they are both zero. 
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Process 1 is in a sense easier than process 0 because it is stationary. Also in 
process 1, however, the ni are in general not independent to the effect that 
the 7~, and hence the A~, are r  Note that in Eq. (3.13) the t e rmfoq  1 is, 
by Eq. (1.3), the average of ni in process 1 (!). Thus one could say that in 
process 0 the zeroth run, through its mere existence, has an effect on all 
subsequent runs. Note that ( n e ) 0 < o o  for all i~>l by Eq. (3.2), as 
( n o ) o <  oo. 

(a) The First Run. Let us consider the first run to begin with. Again 
we first assume that p is arbitrary and begin with some definitions: 

Tn(i ~ j)  : = probability for the walker, when starting from I~ ~ B, 
to make a run of exactly n steps to l je B; n ~> 1; 
i,j----1,...,t. 

P-1,2 := probability that in process 1 the first run 
has length n I and the second run length n2. (3.16) 

With these definitions we shall write out 7,. 
In process 1 the walker may start with probability t 1 at any point of 

B and so 

Pnln2= t 1 E T~l(i~j) Tn2(J ~k) (3.17) 
i , j ,k 

From Eq. (3.16) we get 

( n l n 2 )  , = 

where we introduce 

E tlln2Pnm2 E Pnm2 
r t l , r t  2 h i , n 2  

= t ' E s,j sjk / t-1 E rjk 
i , j ,k i , j ,k 

(3.18) 

Tij "= ~ Tn(i--" j) (3.19a) 
n 

Sij:= Y~ nTn(i--,j) (3.19b) 
n 

The probabilities T~j, i, j -- 1,..., t, form a matrix of what may be called 
"transition" probabilities between different "states": T~j is the total 
probability of a run from li to lj. Because L is finite 

T~j = 1, for all i (3.20a) 
J 
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[-See also Eq. (1.2).] Also the following is true: 

T 0 = 1, for all j (3.20b) 
i 

This is seen by comparing the random walk p with the reversed random 
walk p obtained from p by defining/~(l) = p ( - l ) ,  l ~ L .  For each n~> 1 the 
probabilities T~(i ~ j ) [ p ]  and T,( i  ~ j)[/~] in Eq. (3.16), corresponding to 
p and/~, are related as 

T~(i--* j)[jS] = T,(j--+ i)[ p~ 

This gives To[/3 ] = Tji[p],  so that Eq. (3.20b) follows from Eq. (3.20a), 
which is valid for all p. In all cases therefore T := (To.) is what is called a 
doubly stochastic matrix. 

Using Eq. (3.20a) we may simplify Eq. (3.18) a little bit to 

( n l n 2 ) l = t  -1 ~ SoSjk (3.21) 
i,j,k 

The product (nl> 1 (n2>i, which is the second term of ~ in Eq. (3.14), is 
known from Eq. (1.3), but we shall want for it an expression similar to 
Eq. (3.21). Following a similar line of reasoning as above we get 

( n l ) ~  = t - t  ~ S~ (3.22a) 
i,j 

(n2)1 = t -~ ~ To Sj~ = t - l  ~ Sjk (3.22b) 
i,j,k j,k 

where we use Eq. (3.20b). Combining with Eq. (3.21) we thus arrive at 

~1 = t - -1  2 s i j a j  k -  t - 1  So (3 .23)  
i,j,k t,} 

Now we are ready to use the symmetry of p, which will again be seen 
to be of crucial importance. From Eq. (3.7) it follows that p =/~ and hence 
that T and S : =  (&j) are symmetric. Defining 

Si :=  ~ S o, i=  1,..., t (3.24) 
J 

and noting that by the symmetry also Sj = ~ i  So, we may then write 

~ = t - ~ S ~  - t ~ Si 
i 

(3.25) 
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Now the right-hand side of this equation has the pleasant property that it 
can be written as a sum of squares (!): 

71 = t 2 ~ ( S i -  Sj) 2 (3.26) 
i<j  

and it thus immediately follows that 71 >~0 and, by Eq. (3.15), A1 ~>0 or 
with Eq. (3.13) 

( n l ) o  ~>f0q i (3.27) 

This is the desired inequality for the first run. 
The equality sign in Eq. (3.27) holds i f  and only if  the Si in Eq. (3.24) 

are all equal. Si has a simple interpretation: it is the average length of  a run 
starting from black point labeled i. When t = 1 the sum in Eq. (3.26) is 
empty and the equality sign holds. This is the case of a strictly periodic dis- 
tribution. [Note that it follows from Eq. (3.23) that for this particular case 
( n l ) o = f o  q 1 also for asymmetric random walks; here the equality for 
general p is a well-known result found by Montroll(8).] When t = 2 the sum 
in Eq. (3.26) is not empty; in this case, however, we have not only 
T , ( I ~ 2 ) = T n ( 2 - - - , 1 )  by the symmetry of the random walk but also 
Tn(1 ~ 1)= Tn(2 ~ 2 )  by the inversion symmetry of the unit cell, so that 
both $12 = $21 and S l l  = $22 hence S 1 = S 2 and again ( n l ) o = f o q  -1. This 
is the case of a pair-periodic distribution. When t ~> 3 we do in general not 
have equality (unless of course the arrangement of black points is strictly 
or pair-periodic on a smaller scale); equality then holds only for special 
choices of p, L, and B. 

(b) The Runs  2,3, .... Further inequalities follow from simple matrix 
algebra. Equations (3.13)-(3.15) serve as our starting point. 

With arguments similar to those presented above it is found that 
Eq. (3.23) generalizes to 

7k=t 1 ~ Si j (T  k 1) jmSmn--  t - 1 2 S o  �9 , k ~ l  (3.28) 
i,j,m,n i,j 

Here the power T k-  1 "bridges the gap" between the first and the (k + 1)st 
run in the first term of Eq. (3.14). When we use the symmetry of the ran- 
dom walk this equation simplifies further to 

7k = t - l (  s, ( Tk 1 _ t - l E )  s) (3.29) 

where s is the t vector with components Si, i= 1,..., t, as given by 
Eq. (3.24), E is the t x t matrix with all elements equal to 1 and ( . , . )  again 
denotes the vector inner product. 
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To proceed we make the following observations. 

(i) r E =  E T =  E by Eqs. (3.20a, b), so T k-I  and t - l E  have a com- 
mon base of eigenvectors. Hence each eigenvalue of T k-  ~ - t 1E is the dif- 
ference of the corresponding eigenvalues of T k i and t-~E. 

(ii) Both T and E are symmetric and have real eigenvalues. By the 
Perron-Frobenius theorem the eigenvalues of r fall in the interval 
[ - 1 ,  1]. The largest eigenvalue is 1 (which may be degenerate if r is 
reducible) and one eigenvalue 1 corresponds to the eigenvector (1,..., 1). E 
has an eigenvalue t corresponding to the same eigenvector and a ( t - 1 ) -  
fold degenerate eigenvalue 0. Thus, when 1 = zl >/"g2 ~ " ' '  ~ "Ct ~ --1 are 
the eigenvalues of T, the eigenvalues of T k- 1 _ t - ~E are 0 and the powers 

k 1 272 k -  1 . . .~  T t  

(iii) Because T and E are symmetric there exists a matrix O, which is 
orthogonal, such that O ( T k - I - t - I E )  O - I = D  k - l ,  with the diagonal 
matrix 

i ... 0 
"~2 

O ~  " , . ' 

"'" T t 

When we now define u = Os we get from Eq. (3.29) 

~. 2 k 1 ~/k = t--l(u, O k -  lu) = t  -1 - -  Uir i , k>~l (3.30) 
i - - 2  

where the U s are the components of u. 
From Eq. (3.30) a number of interesting inequalities can be deduced. 

We use Eq. (3.15), and read off for k odd: 

(1) A~>0;  for k~>3 the A k are either all = 0  or all >0;  

(2) A k ~> A m for all m > k (m both odd and even); 

(3) A k + A k +  1>10 and hence with (2): Ak~> [A~+t[; 

(4) When ~2 r 1 and z, # - 1  then Ak --" 0 exponentially fast with k as 
k --. 0% including the even-numbered runs. 

Thus we have as a general result the set of inequalities 

A I >~ A 3 >/ A s >~ A 7 >~ - "  >~ 0 , 

A~> 1321, A3~> IA4I, Ms>~ 1361 .... (3.31) 
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Whereas the A k for k odd display a "smooth" monotonic decay, sur- 
prisingly enough the even-numbered runs show no such general behavior. In 
fact, examples show that there is a rich variety ([) in behavior for A2k, 
depending on the choice of the colors in the unit cell and the step dis- 
tribution of the random walk. In some cases all A2k are positive, in others 
all are negative, but there exist cases where different signs occur. As an 
example for the latter situation, take for ], a ring of six lattice points (the 
ring structure takes care of the periodic boundary conditions) with three 
black points, two of which are neighbors and the third at a nonneighboring 
position, and take for the random walk one with steps of probability 3/7 
over one lattice spacing and 1/14 over two. A straightforward calculation 
shows that for this particular example A 2 > •4 > 0, whereas 
A 6 < A s <  "'" <0.  

In many cases one has the smooth behavior 

AI>/A2/>A3>/A4/>As>/ "'" ~>0 (3.31a) 

From Eq. (3.30) it is clear that this will certainly occur in all cases where 
the eigenvalues of T are all >/0. From the so-called Gerchgorin theorem (9) 
together with Eqs. (3.20a, b) it follows that the eigenvalues fall in the set 

{ re  [ - 1 ,  1]: J r -  T,I ~< 1 -  Tii } = [2(rain T , ) -  1, 1] 
i = 1  i 

For Eq. (3.31a) to hold it therefore suffices that Ti~>~ 1 for all i. This is so, 
for instance, in the following two cases: (i) p(0) ~> �89 irrespective of all other 
details; (ii) the simple random walk on any ring of points with any color 
arrangement that does not have two black points as neighbors. 

In some cases where Eq. (3.31a) does not hold one encounters an 
oscillating decay of the type 

AI >~ - A 2  >/ A3 >/ - A 4  >/ As >/ .." >/0 (3.31b) 

This may appear, for instance, when there is some underlying symmetry in 
the arrangement of the colors and some of the U~ in Eq. (3.30) are zero. As 
an example consider a simple random walk on a ring of six points with 
three black points next to each other. One finds after a short calculation: 
Ak (_1~k+1 k>~l. 

To classify the different types of behavior for the even-numbered runs 
one would need more detailed information about T and S. It turns out that 
this presents a very complicated problem, since in general little is known 
about these matrices in detail. Although Eqs. (3.31a, b) appear only as 
special cases of Eq. (3.31), examples tend to show that the monotonic 
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decay and, to a lesser extent, the oscillating decay are predominant. In 
most cases the decay becomes asymptotically either monotonic or 
oscillating as k--* oc. 

A special situation occurs when r2 = 1 (and U2 ~ 0): in that case the 
Ak do no t  decay to zero. This, however, is possible only when T is 
reducible, since when T is irreducible the eigenvalue 1 is always non- 
degenerate (see Ref. 5, p. 120). Irreducibility of /" means that from each 
black point the walker can eventually reach all other black points (i.e., 
there are no disjoint sets of black points between which the walker cannot 
"cross over"). It will be clear that in the reducible case the problem is in a 
sense "ill posed" and can always be reduced to the irreducible case. In the 
latter case also the eigenvalue - 1  is nondegenerate. From the Gerchgorin 
theorem one sees that r t - -  - 1  can occur only when Tii = 0 for s o m e  i. By 
the irreducibility it can occur only when Til = 0 for all  i (see Ref. 5, p. 121). 
Together with the symmetry of the random walk the latter condition is so 
strong that it is fulfilled only in the trivial case where the walker cannot 
make any step between a black and a white point. 

Finally, in Eq. (3.31) the equality signs hold in a few special cases, 
notably for the strictly and the pair-periodic distribution. (In the latter case 
U 2=0  due to the symmetry.) A remarkable situation occurs when A1 > 0  
and A~ = 0 for k >_/2. This happens when r has an eigenvalue zero and all 
other eigenvalues carry a coefficient zero. This may be illustrated by the 
following example: a ring of five points with three black points, two of 
which are neighbors and the third at the remaining nonneighboring 
position, and a random walk with steps of probability I-1 + (13)i/2]/12 over 
one lattice spacing and [ 5 -  (13)1/2]/12 over two. In this example T is not 
invertible (!) and, so to say, p r o j e c t s  the Ak, k~> 2, onto zero, in the sense 
that for any given k >~ 2, but no t  for k = 1, the three black points each have 
probability 1 to be hit as the kth black point, which brings the result back 
to Eq. (1.3). 

3.2.  E x t e n s i o n  t o  A r b i t r a r y  C o l o r  D i s t r i b u t i o n s  

So far we have only considered periodic color distributions. The fact 
that the unit cell of the periodicity was completely arbitrary makes one sus- 
pect that the results of the previous section may be generalized. As we shall 
see, this is indeed the case and the extension can be made to arbitrary 
(translation-invariant) color distributions. It turns out, however, that the 
extension is far from trivial. In fact, the approach followed in Section 3.1 
will serve only as a guide and on our way we shall encounter some new 
and interesting problems that have to be dealt with. Thus the extension is 
more than just a piece of formalism. 

822/39/1 2-3 
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In the general case there is no unit cell and we return to our original 
description with a fixed starting point for the walker (at the origin) and a 
translation-invariant color distribution. For simplicity we shall from now 
on assume that L = zd; the arguments are easily generalized to arbitrary 
lattices. 

(I) The Zeroth Run. Our aim is to generalize Eq. (3.10). Let 
:-- {B: B c L }  be the set of all subsets of L. A color configuration in L 

will henceforth be identified with the set that consists of all the black points 
and ~ may therefore represent the set of all color configurations. For a 
given B let W : =  L\B  and let p(8) :=  (p(l' - I))~,r~ w be the matrix of step- 
ping probabilities between the white points. The set W is either finite or 
(countably) infinite. By the translation invariance, W is empty with 
probability 1 when it is finite (see Section 2). Since, however, we have 
assumed that # [ L  is b l a c k ] - - # [ W  is empty] =0,  it follows that with 
probability 1 the matrix p~8)is (countably) infinite. 

Let I[E] E {0, 1 } denote the indicator stochastic variable of the event 
E. A little reflection shows that instead of Eq. (3.5) we now have 

(no)o=I[O~W] ~ (l+p(B)+p(~)2+...)ol 
I E W  

(3.32) 

where the bar denotes the average over N with respect to N and 1 is the 
(countably) infinite unit matrix. Here we must again assume that f0 = 1. 
Because of the translation invariance we may choose instead of 0 any point 
of L as the starting point for the walker and we are therefore free to write 

( n o ) o = I [ l ~ W ]  ~ ( l+p<')+p~")2+'") . ,  f o r a n y / ~ L  (3.33) 
I ' ~ P V  

The powers o f p  (B) are well-defined (see, e.g., Ref. 4, p. 161). It is not 
at all clear, however, whether or not the inverse of 1 - p l S )  exists with 
probability 1 and thus whether or not ( n o ) o <  ~ .  This is a problem not 
encountered in the periodic case. We shall return to this point in the dis- 
cussion. 

We shall arrive at our result by a truncation method together with a 
suitable limit procedure. Let 

L . : =  {leL:l l i l<~n, i=l  ..... d}, n>~O 

and let p f )  be the truncation of p~) obtained by deleting all rows and 
columns that correspond to white points outside L,,  i.e., p f )  is the matrix 
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of stepping probabilities between the white points that fall in L,. Clearly 
we have 

(no)o>  IZnn 1 E I[l  W] I[l' e W](l(f)+p(f)+p(f)2+ "")H' 
1,l' ~ Ln 

for any n (3.34) 

where l ( f  / is the unit matrix of the same order as p(f), i.e., of order 
fLn :~ wn. To get Eq. (3.34) one first averages in Eq. (3.33) over l in Ln and 
then truncates p(8) (observe that the elements o fp  (~) are nonnegative). The 
advantage of Eq. (3.34) over Eq. (3.33) is not only that l and l' appear 
symmetrically but also that p(f) is a finite matrix. Working with Eq. (3.34) 
we shall avoid some difficulties that are connected with infinite matrices 
(see, e.g., Ref. 4, Chap. 6) and that would, at least for our purpose, 
unnecessarily complicate the calculations. 

As we shall see in a moment, the right-hand side of Eq. (3.34) is finite 
for all n. It is also monotone nondecreasing in n. We shall derive for this 
right-hand side an inequality valid for all n and then take the limit n -~ 
to obtain the desired inequality for (no)0. For finite n there may be a 
positive probabifity that L ,  n W is empty, in which case p(f) is not defined. 
However, since the sequence (L,),~>o is monotone and l i m , ~ o  L , = L  it 
follows that l i m , ~  ~ [ L ,  is black] = ~ [ L  is black], and as the latter 
probability is zero by assumption the probability that L , ~  W is empty 
tends to zero as n ~ ~ .  

If we exclude the degenerate random walk (p(0)= 1), then because L ,  
is finite there is for all B e ~ a step of positive probability that will bring 
the walker from a point inside L,  c~ W (if not empty) to a point outside. 
Therefore p(f) is for all B and n strictly substochastic so that the inverse of 
l ( f ) - p ( f )  exists. Thus we may write for Eq. (3.34) 

<plO)O ~ [ L n l - 1  Z (l(n B)-"(B)]-IYn HI' 
l,l' ~ Ln~ W 

= IL.l-  (e l ) ,  e(f)) for any n (3.35) 

where e(f ) is the vector of order [L, c~ W[ with all elements equal to 1. Note 
that the right-hand side of Eq. (3.35) is finite for all n. 

Now we are ready to use the symmetry of the random walk. This 
property implies that for all B and n the matrix p(f) is symmetric, so that 
l ( f  ) - p ( f )  is positive definite. The Kantorovich inequality gives 

(no)o >~ [L,I -1 (e(f), e(f))2/(e(f), (l(f) _ p(f)) e l ) ) ~  for all n (3.36) 
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We proceed as follows. Let 

q f ) ' =  IL. c~ B[/IL.I (3.37a) 

denote the fraction of black points in L.  for given B. We have (el), e f  )) = 
IL. n WI and 

(el), p f ) e f  )) = ~ p(l-- l') 
l,l' c LnCh W 

= IL,,n W I - I L , , n B I  + p(t -  t') + Rf~ 
I, F E Ln C~ B 

where 

R f  ) :=  ~ Z p ( l - l ' ) -  Z Z p ( l - l ' )  (3.37b) 
l( iLn l' ~ L n n B  l~Ln  n W l'(~Ln 

plays the role of a rest term. Defining 

X f  ) = IL, c~B[ -~ ~ p ( l - l ' )  (3.37c) 
l , l 'c Lnc~ B 

we thus get 

( n o ) o )  (1 -qf))Z/(q(f)[1 - X f  )-] - I L . [  -~ R f ) )  ~ for all n (3.38) 

Now we consider the limit n --* oo of Eq. (3,38). First we show that 

lira [Lnl 1 R f ) = 0 ,  f o r a l l B e ~  (3.39a) 
n ~ ( : o  

ProoL By the symmetry of the random walk it follows from 
Eq. (3.37b) that ]Rf/[ <<. Zt~L~ Zrr  L~ p ( l -  l') for all B. The latter sum does 
not depend on B. Let c,~ : =  ~, lcL ,  ill >~ m p (  l), m>>-O, and Lm, n : =  Ln\L n m, 
m < n  (the "shell" of thickness m between the cubes L ,  and Ln-m). Then 
one writes 

Z Z p(Z-l')= Z Z p(Z-t')+ Z Z p(l-l') 
l ~Ln  l' q~Ln l ~ L n - m  l ' r  l~Lm,n l'•Ln 

~lL,~-mtCm+lLm,.I 

and for m fixed this gives 

lim IL~1-1 IRf)l~< lira iL.I 1 {IL. ml cm+lL~., ,I}=% 
n ~ o o  n ~ o o  

Noting that c m ~ 0 as m --* oo one sees that Eq. (3.39a) follows. | 
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Having thus disposed of the rest term we are next faced with the 
question whether or not also the limits 

and 

q(m .= lim q~B) (3.39b) 
n ~  

X(B):= lira X~ B) (3.39c) 
/ / ~ o o  

exist. This is not immediately obvious. Indeed, it is easy to construct color 
configurations for which these limits do not exist. However, the translation 
invariance entails, as we shall show in a moment, that q(B) and Y (m exist 
with probability 1. This is weaker but enough for our purpose, and we can 
now safely take the limit in Eq. (3.38) to obtain 

(no)  0 >~ (1 - q(B))2/q(B)[1 - jf~m] ~ (3.40) 

thus completing the generalization of Eq. (3.10). 
The existence with probability 1 of the limits in Eqs. (3.39b, c) follows 

from an ergodic theorem for so-called (super)additive stochastic 
processes (1~ Consider first Eq. (3.39b). For any finite set S o L  let 
N(s BI := IScaBr denote the number of black points of B that fall in S. The 
random variable N(s B) has the following three properties: 

(i) By the translation invariance the probability distributions of N(s B) 
and ~(BI are identical for all l sL ,  where S + l  is the set obtained 

" ' S + I  

from S after a translation over l ("stationarity"). 

(ii) For any two disjoint sets S and S': N(se~s,=N(se)+N(~, I, for all 
B ~ ~ ("additivity"). 

(iii) 0~<N~m~< [S[, for all B ~  ("integrability"). 

From a theorem by Pitt (1~ (which is a generalization to higher dimensions 
of the well-known ergodic theorem of Birkhoff) it then follows that 
limn ~ ~ I S . I -*  N~s~ ) exists with probability 1 for any sequence of finite sets 
(S~)n~>o such that l i m , ~  IS, I = ~ ,  provided this sequence satisfies the 
following regularity conditions: (1) S,  c L ~  for all n; (2) IS.I/IL~I is boun- 
ded from below; (3) S~ is convex in L for all n. Furthermore, under these 
conditions the limit does not depend on the sequence chosen. Obviously, if 
we choose S, = L,  the regularity is guaranteed and this proves the existence 
with probability 1 of q(~). In general q(B) will be a stochastic variable. 

Next consider Eq. (3.39c). For any finite set S c L  we now define 
M~s m : =  Zt, r ~s~B p ( l - I ' ) .  This random variable has properties similar to 
those of N~s B), except that (ii) is replaced by the following: 
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(ii)' For any two disjoint sets S and S': M(~ B) /> M ~B~ + M(s q), for all ~ S '  S 

B E ~ ("superadditivity"). 

The existence with probability 1 of limn ~ ~ [Sn[- 1 M(~)now follows from a 
generalization of Pitt's theorem due to Nguyen (11) (see also Akcoglu and 
Krengel(l~)). By the regularity the limit is again independent of the 
sequence chosen. This proves the existence with probability 1 of q(~)X (BI 
and hence of X (8) (it is easy to prove that q(m> 0 with probability 1 when 
B is nonempty). Also X (B) will in general be a stochastic variable. 

Thus we have now firmly established Eq. (3.40). As we have seen, 
except for the translation invariance only the regularity of the sequence 
(L,),,~> 0 is required. This is a very weak condition (which, incidentally, may 
still be slightly relaxed (12)) and it is, of course, reassuring that we could 
have chosen instead of our L,  any other regular sequence of sets without 
affecting q(B) and X (~) [and Eq. (3.39a)]. Our choice of the cubes Ln is 
standard. 

Equation (3.40) is the formal generalization of Eq. (3.10). The 
stochastic variables q(S) and X (B) are formally defined as limits, q(e) being 
the "asymptotic" density of black points corresponding to B and X (B) the 
"asymptotic" mean probability of a jump between two black points. In 
general, these limits will not be constant on N, not even with probability 1. 
The simplest example for this situation is a color distribution which is a 
convex linear combination of two periodic color distributions with different 
densities of black points. We know only that 

q i-bS~ = q (3.41a) 

q(B)X(B)~=I[O~B] ~ p(l) = q P r o b [ n l = l [ n o = 0 ] = : q X  (3.41b) 
1 E B  

as may readily be shown. 
In many cases of physical interest the limits q(B) and X (B) are constant 

with probability 1. These cases include all so-called extremal color dis- 
tributions, which are distributions that cannot be written as a convex linear 
combination of two different (translation-invariant) color distributions. 
This follows from the easily established fact that q(B~ and J((~) are trans- 
lation invariant. Examples include all periodic distributions and all (trans- 
lation-invariant) grand canonical distributions with "short-range 
correlations", i.e., having the property that the colorings of any two finite 
blocks become independent as the blocks are separated to infinity (see 
Ref. 13, Chap. 11). The random distribution falls in the latter class. In such 
cases Eq. (3.40) reduces to Eq. (3.10) through Eqs. (3.41a, b), so that again 
we end up with 

(no)o/> (1 -- q)2/q(1 -- X) (3.42) 
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To get this result we used fo = 1. When fo < 1 the generalization is, of 
course, given by Eq. (3.11). 

In the random case obviously X = p ( 0 ) +  q [ 1 -  p(0)] and we get the 
result (n0)  o/> (1 - q)/q[1 - p(0)]. This is precisely the bound which for 
this case was known already from other arguments (see, e.g., Ref. 14) and 
happens to be valid also for asymmetric random walks. The fact that the 
bound obtained here is not stronger is not at all surprising. In Ref. 14 we 
proved that for the random case (no)o~< ( 1 - q ) / ( 1 - F ) q ,  where F is the 
(total) probability of return to the origin. F can be arbitrarily close to p(0) 
for lattices of large enough dimensionality, such that even within the class 
of symmetric random walks the lower bound obtained can be arbitrarily 
sharp. 

(11) The  R u n s  w i t h  N u m b e r  i>~1. Our aim is to show that the 
inequalities in Eq. (3.31) remain valid in the general case. We shall not 
spell out the generalization in full detail but rather indicate the main parts 
of the proof. 

First we introduce the analogs of Eqs. (3.19a, b) for given nonempty 
B e N :  

T~8)(l ~ l') "= probability for the walker, when starting 
from l e B, to make a run of exactly n steps 
to f eB;n>~ 1;l, l' eB .  

~ f l ) : =  ~ T(~el(l ~ l') (3.43a) 
n 

S}f,) "= ~ nT(~m(l--, l') (3.43b) 
n 

In the following we shall assume that ~ [ B  is empty] = 0. The probabilities 
T~rm, l, l ' e  B, form a matrix T (m of "transition" probabilities between the 
black points; T (s) is (countably) infinite with probability 1. For given le  L 
let N t ' =  {B e N: l e B}. By the translation invariance and by Eq. (1.2) 

N '  0 

2 @ ~ =  ~ T(o~ ) =1  for any givenl 
l ' ~ B  F E B  

Since obviously Zz,~ B T~ff) ~< 1 for all I e B and all B e N, this shows that 

T}jq ) = t for all l e B with probability 1 (3.44a) 
l ' ~ B  
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A comparison of the random walk with its reversed counterpart shows that 
also 

E T}f ) = 1 
l e B  

for all l' e B with probability 1 (3.44b) 

so that T (B) is with probability 1 doubly stochastic. 
Using Eqs. (3.43a, b) and Eq. (3.44a) we write out 

~ 0  
( n l n k + l )  1= ~ ~(mr 1~ ~,(B) k~> 1 (3.45) ~ 0 l  1 ~ J t  ,11112 ~1213 

11,12,13 ~ B 

Next, using the translation invariance as well as the inversion symmetry of 
the lattice, we may write this in the following slightly different form: 

( n l n k +  1)1 = E Sta)tT (~ 1)ot2 ~ (B)~~ (3.46) 110 \ ~1213 
11,12,13 e B 

The proof is left to the reader. Then, defining 

S~) := ~ ~ l e B  (3.47) 
F E B  

and using the symmetry of the random walk, we get 

~ 0  
(nlnk+l)1 = ~ S(o~)( T(mk 1)01S} B) (3.48) 

l ~ B  

Together with Eqs. (1.3) and (1.5) this gives 

(nx )o=fo l  I[OeB] ~ S(oB)(T(mk-1)o,S}m , k~>l (3.49) 
l e B  

Equation (3.49) serves as the starting point for our calculation. In the 
following we shall assume that ( n k ) o <  ~ for all k. We shall return to this 
point in the discussion. 

To arrive at our result we again use a truncation method. Consider 
Eq. (3.49). By the translation invariance the point 0 may be replaced by 
any given point l and if we then average over I in L, we get 

< n k ) o = f o  I I t . I  1 Z ~ S~8)(T(mk-1),,, S~p) for any n (3.50) 
l ~ Ln C~ B I' ~ L c~ B 

The second sum runs over the black points in the whole lattice. To obtain a 
symmetric expression we first restrict this sum to L, and then take the limit 
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n --* oo. Let T(~ ~) be the truncation of T (e) obtained by deleting all rows and 
columns that correspond to black points outside L~. Then 

( n k ) o = f o  lim IL,,I -~ ~ ~.')(T (mk- S}P ) 1 St , n 1)H' (3.51) 
n ~  oo l,l, ~ L n C ~ B  

The equality sign is guaranteed by the fact that L,  ~ L monotonically in n. 
We proceed by defining the following counterparts of 

Eqs. (3.13) (3.14): 

Ak := (nk)o--~c, k>~ 1 (3.52) 

7k :=  ( n l n k + l ) l - - ( n l ) l  to, k>~l (3.53) 

where 

:= fo 1 lim IL, 1-1 IL, c~BI 1 ~ S~mSlp ) (3.54) 
n ~ oo l,l, Ln c~ B 

Equations (3.52)-(3.54) differ from Eqs. (3.13)-(3.14) for reasons which 
will become clear later. It will be seen that in the periodic case 
~c =foq 1 = (nk ) l ,  so that the two sets of definitions coincide. Note that 
Eq. (3.15) remains valid and thus we can again investigate A k by l o o k i n g  a t  
3)k. 

Using Eqs. (3.15), (3.51), and (3.54) we write 

~k=q 1 lim IL, I '(s~ B), (T~ B)k 1--[L. nBI-1E~m) s~B)) ~ (3.55) 
n ~  oo 

where E~ ~) is the matrix with all elements equal to 1 of the same order as 
T(, "), i.e., of order [Ln c~ B[, and s(~ m is the vector with components S} m, 
l e L n ~ B .  Now Eq. (3.55) is in form very similar to Eq. (3.29) and we shall 
use this fact to show that the 7~ satisfy exactly the same set of inequalities 
that were found in the periodic case. To that end let us write 

7k = 7(~ B)e (3.56) 

with 

7(k B) := Jim~ [k;n"(m (3.57a) 

(8) := q-1 1 ~;. IL~I (s~m,(Tr IL.c~BI-~ Et.e))s~ m) (3.57b) 

Here it is important that the limit in Eq. (3.57a) exists with probability 1. 
This is a consequence of the ergodic theorems used below Eq. (3.40) (note 
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that 7k< 0% because ( n k ) o <  oo by assumption), both the translation 
invariance and the regularity of our sequence (L,) ,>o playing again an 
essential role. We shall show that with probability 1 the following 
inequalities hold: 

~ '~ > 7~3 e~ > ~s~'~B~ > ~,(TB~ > ... > 0 

> > 17 B I, > .... (3.58) 

Together with Eqs. (3.15) and (3.56) this will immediately yield the desired 
generalization of Eq. (3.31). 

Proof. As announced, to prove Eq. (3.58) we shall exploit the close 
resemblance between Eqs. (3.29) and (3.57b). Now for all B and n the 
matrix T(f ) is finite and, by the symmetry of the random walk, symmetric. 
Therefore we can imitate most of the argument that led from Eq. (3.29) to 
(3.30). The only difference is that, unlike T ~m, T(f ) is not doubly stochastic, 
as is required to follow the argument. According to Eqs. (3.44a, b) the 
doubly stochastic property is recovered in the limit as n ~ ~ and we have 
somehow to use this fact in Eqs. (3.57a, b). This is a technical problem 
which may be solved as follows. 

Let T'~ (~) be the matrix obtained from T f  ) by defining 

:=  
(Tf)) , , ,  l' -~ l 

1 -  y,  r = t  
l"v* l 

(3.59) 

i.e., by simply adding the "missing part" of the row sum ( = column sum) to 
the diagonal elements. Like T f )  this matrix is finite and symmetric, but by 
construction it is also doubly stochastic for all n. The point in introducing 
this matrix is that in the limit as n-* c~ we may, as we shall show in a 
moment, simply replace T f  ) by T'n (B) in Eq. (3.57b) without affecting ~m. 
But then ~,~m can be written in a diagonalized form which is similar to ~" k;n 

Eq. (3.30), T', (8) having all the properties required to copy the proof, and 
Eq. (3.58) can immediately be read off. The details are left to the reader. 

It thus only remains to show that the substitution of T', (m for T f )  is 
indeed justified, in other words, that 

dk :=  lim I L ~ l - l ( s f  ), [Trn(B)k-l--T (B)k 1]s(B))~ '=0 fora l lk~>l  
n ~ o o  

(3.60) 



Random Walks on Lattices w i t h  Points of  T w o  Colors. II. 43 

This is done as follows. For k = 1 there is nothing to prove, as then the 
term between the square brackets in Eq. (3.60) is zero. For k =  2 we use 
Eqs. (3.44a) and (3.59) to write 

d2= lim IL~[ 1 E S~B)2~ Y" rSf) } 
n ~ c o  l e L n ~ B  ( l , e (L \Ln)n  B 

The following reasoning is similar in spirit to the one used to prove 
Eq. (3.39a). Let 

l;m 
I'~B,[I' ll>~m 

then for fixed m 

d2~< lira IL~[ ~ ~ s(B)213"(B)t t;m + lim IL~I -~ ~ SJ m2 
n ~ co l~ Ln_mC~ B n ~ co l~ Lm,nn B 

By the translation invariance it follows that for any z > 0 

dz<~q~(e)2tg(B ) +g)~0 for all m 
~ 0  ~, O ; m  

When we now let m ~ oo and observe that by Eq. (3.44a) 

lira ~(e)= 0 with probability 1 in ~o 
m ~ co ~ O ; m  

we find that 

d2 <~ gq S(o ~$5~~ = eq(nln2) l  = efo(nl )o 

[see Eq. (3.48)]. Here we have applied the Lebesgue bounded convergence 
theorem (see Ref. 15, p. 110) to interchange the limit and the average, using 
the fact that the average in the right-hand side is finite by assumption. 
Since e is arbitrary this proves that d2 = 0. 

The proof for k/> 3 proceeds in a similar way. We first note that 
T'. (8) <. T f  ) + I f )  and write 

k - - 1  

T,(~)k_ (B)k_ 
k'=O 

k-1 k' / k ' \  
_ .  ( _ .  - r f ) )  L ~ k,~=O k,,~O ~ ktt  ) T(B)k" T ' (B)  (B)k--k' -- I 

We substitute this inequality into Eq. (3.60) and follow the same type of 
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reasoning as before, using the translation invariance. After a little 
manipulation we then find that 

dk+l<~eq (nlnk--k'+k" )1 
k ' = O  k ' = 0  k "  + 1  

=efo (rtm+ 1)0 
m = O  

The details are left to the reader. The boundedness of the moments implies 
that dk = 0 for all k. This proves Eq. (3.60) and hence Eq. (3.58). | 

We have thus established the desired generalization of Eq. (3.31), 
except that it remains to identify ~c in Eq. (3.54). Let 

then ~c takes the form 

Y f ) : =  IL,,nB[ ~ ~ SI ~) (3.61) 
l ~ L n ~ B  

K = f o  1 lim q f ) Y _ f  12~ 
n ~ ( x 3  

where Eq. (3.37a) is used. We already showed that the limit in Eq. (3.39b) 
exists with probability 1. The same ergodic theorems imply that also 

y(B) .= lira Yf)  (3.62) 

exists with probability 1 (note that q(8)> 0 with probability 1), so that we 
arrive at 

= f o  i q(a)y(~)2 ~ (3.63) 

Like q(B~, y(B) will in general be a stochastic variable. A simple calculation 
shows that 

q(8) y(~) ~ = q ~ ~o = q (n l  ) 1 = fo (3.64) 

Since q(B)>~ 0 for all B we have 

q ~ . 7  ~ -  { ~ ~ ) 2 ~ > 0  

and therefore 

K>~ foq  -1 (3.65) 
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Thus our earlier bounds remain valid in the general case. For extremal 
color distributions q/m and y(m are constant with probability 1 and the 
equality sign holds in Eq. (3.65). 

The above calculation completes the generalization of the bounds 
obtained in Section 3.1. What seems harder than in the periodic case, 
though, is to determine under what conditions Ak --' 0 as k ~ oe (it is not 
even obvious that Ak < oe) and, if so, how fast. In the periodic case we 
found that the decay, if present, is always exponential in k. In the general 
case we expect this not to be so. The decay depends on the eigenvalues of 
T (~) in the neighborhood of 1 and - 1, the spectrum of T (B) can have both 
a discrete and a continuous part and the decay, if present, may generally be 
slower than exponential. What also seems harder than in the periodic case 
is to find examples where the equality signs hold in Eqs. (3.31) and (3.42). 
For the first run, however, we note the following. Returning to Eq. (3.49) 
we have 

( n l ) o  = ~ ' ( ~  ~ ~  gr ~0 / ~ 0  (3.66) 

which is the counterpart of Eq. (3.26) (note that ( n l ) o - f o q  -1 can be 
written as a variance), and it follows that @ l ) o = f o q  -~ if  and only if  
within the set of color configurations that include the origin the average 
length of the first run is constant with probability 1. This may be used to 
construct new examples of equality for the first run, but it will be clear that 
the restriction on the color distribution and the random walk is rather 
strong, showing that in general there will be strict inequality. 

4. AN APPLICATION TO LATTICES WITH TRAPS 

Suppose now that the black points are traps characterized by a 
probability of escape r/, i.e., whenever the walker visits a black point there 
is a probability 1 -~/ that he is trapped (forever) and a probability t/ that 
he remains free ("escapes"). If r/= 0 (r/> 0) the trap is called perfect (imper- 
fect). We assume that r/< 1. 

Let 

T n := probability that the walker is trapped after exactly 
n steps; n >~ 0. 

In Ref. 1 it is shown that T~ is monotone nonincreasing in n for arbitrary 
L, ~ ,  and p. From Eq. (1.1) it may further be deduced that for all r/ the 
total probability of trapping f : =  }2, T, equals fo. Thus by Eq. ( 2 . 2 ) f =  1 
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in almost all cases of physical interest. The average number of steps before 
trapping ( n ) : =  Z ,  nTn/Z n T, follows from 

( n } =  (n0)0+ ~ r/i(ni)o (4.1) 

Equation (4.1) shows that in order to calculate ( n )  one has to know all 
the moments (ni)o, i~>0. 

Our results in Section 3 give a lower bound for ( n )  for symmetric 
random walks. For perfect traps we have the bound given by Eq. (3.42) 
(assuming without loss of generality that f =  1 and that the trap dis- 
tribution is extremal): 

(n)[ ,=0/> (1 - q)Z/q(1 - X) (4.2a) 

From Eq. (3.31), using that ~f=l  (ni)o>~kq -1 for all k, we can further 
deduce that for imperfect traps ( n )  is prolonged by an amount 

q 1 
- - (4.2b) ( n )  (n)[,=O>J l _ q q  

Except for a few rather special cases, the equality sign in Eq. (4.2b) holds 
only for strictly and pair-periodic trap distributions. 

5. D I S C U S S I O N  

In Ref. 1 and the present paper we have studied statistical properties of 
the sequence of consecutive colors encountered by a random walker on a 
lattice of which the points are colored black and white according to a 
translation-invariant joint probability distribution. The relevance of our 
results to trapping problems in particular will be evident. Trapping 
problems have a long history and many properties have, in some form or 
other, been discussed in the literature (see, e.g., Refs. 3, 16, and 17). 
Usually, however, the traps are assumed to be distributed either 
periodically or randomly over the lattice. Except in one dimension, little is 
known in detail for other trap distributions. Reference 1 and the present 
paper are an attempt to bring out some of the characteristic features of 
trapping problems in a more general setting. 

Earlier Results for Traps. For periodic trap distributions an 
exact solution for ( n )  (see Section 4) was found in Ref. 18. The approach 
followed in that paper is a generalization of earlier work by Montroll, ~19) 
who derived an expression for (n)[~= o. The final result, however, appears 
in a form that is not very practical for analytical purposes unless the unit 
cell of the periodicity contains a very limited number of traps. To be more 
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specific( when N is the number of points in the unit cell and t the number 
of traps, ( n )  is expressed in terms of t x t  determinants of which the 
elements are Green's functions that are N-fold sums depending on the 
positions of the traps and on the random walk. As an illustration of the dif- 
ficulties that one encounters in this context the fact may serve that we have 
been unable to rederive Eqs. (4.2a, b) for any unit cell with more than two 
traps starting from the results of Refs. 18 and 19. Thus in practice to get 
detailed results one should have recourse to the computer. 

For  the random distribution asymptotic expansions for ( n )  valid for 
small q were obtained in Ref. 20 for several classes of random walks of 
varying dimensionality. Earlier work by Rosenstock (21) included a study of 
( n ) ] , = 0  for q--+ 0. So far, only few rigorous results have been obtained for 
the random case, except in one dimension. On the other hand, several 
approximative methods have been developed, one more sophisticated than 
the other, all for values of q that are either small or close to unity (see, e.g., 
Refs. 16 and 17). 

Higher Runs, Odd/Even Effect. In this paper we have centered 
interest on the probabilities f i  and the moments (n i )o .  A particularly strik- 
ing aspect of our results for the runs with number i~> 1 is that for i odd 
(n i )0  is always monotone in i whereas for i even a variety in behavior is 
displayed depending on the choice of ~ and p. This difference must essen- 
tially come from our assumption of symmetry, but it is not intuitively 
obvious why then the odd-numbered runs should be so special. To get 
some feeling for the situation, let us look at the first few runs in some more 
detail. For the sake of the argument we consider a simple random walk on 
a large unit cell, with periodic boundary conditions, in which the black 
points occur in several large compact "clusters" surrounded by a large 
"sea" of white points. Now if all black points would have equal probability 
to be the starting point for the first run we would have ( n l ) o  = 
( n l ) l = q -  ~ by Eq. (1.3), but obviously the probability in question differs 
for different black points: by the translation invariance black points that 
are on the edge of a cluster are much more likely to be hit first than others. 
On the other hand, by the symmetry the average length of a run starting 
from the edge of a cluster is larger than that of one starting from the 
interior. Together this leads to ( n  1 )o > q-1. The second black point hit is 
one that with a large probability lies either on the edge of a cluster or one 
layer deeper. This gives q - l <  ( n 2 ) o <  ( n t ) o .  As more and more black 
points are visited, the "excess" in probability of points on the outer part of 
a cluster to be the next black point hit gradually "diffuses" into the cluster, 
so that ( n ~ ) o ~  q 1 monotonically as i n  oo. When, instead of large 
clusters, we have clusters of small size, say, only one interior point and one 
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boundary layer, then the following happens: after the first run the excess in 
probability of points on the edge is all transferred to the single interior 
point, so that now we get (n2>o < q-~. By the symmetry this effect will be 
reversed by an extra run, so that again (n3 >0 > q ~ etc. and the decay is in 
this case oscillating. 

To illustrate this argument one may consider a simple random walk 
on a ring of arbitrary length with one compact cluster of black points of 
size M. An easy calculation shows that as M varies one gets the following 
types of behavior: (a) M = l ,  2 : ( n i ) o = q  -1 for all i>~1; (b) M = 3 :  
oscillating decay; (c) M = 4 :  ( n l > 0 >  q 1, equality for all other i; (d) 
M~> 5: monotonic decay. 

The extreme example considered above brings out the origin of our 
results for the runs with number i ~> 1. More generally it will be clear that 
the bounds obtained all arise from the fact that (i) different black points 
may have different environments, (ii) black points in certain environments 
are more easily accessible than others, i.e., are favoured over others to be 
hit at a given stage in the process, (iii) those black points which are most 
easily accessible are also the ones from which a run takes longest, simply 
because they are surrounded by more white points. The "clumping" of 
black points, or to phrase it differently, the spatial fluctuation in local 
ordering of colors generally tends to increase the lengths of the runs and to 
favor monotonic behavior, but certain special conditions may cause a shor- 
tening of the even-numbered runs. It is interesting to note that the first run 
in a sense "sets the stage" for all the subsequent runs. 

The bounds obtained for the runs with number i~> 1 are probably 
fairly strong. In Eqs. (3.31) and (4.2b) the equality signs hold for all strictly 
and pair-periodic distributions, regardless of the random walk and the size 
of the unit cell, and so there is every reason to expect that the inequalities 
will be sharp in many other cases of physical interest. Moreover, in Ref. 20 
it is shown that for the random distribution ( n )  - (n >Iv = o -- ~//(1 - q) q as 
q ~ 0 for a very large class of random walks, including all transient ran- 
dom walks (which include all aperiodic random walks with d>~ 3). Since ~/ 
is arbitrary this implies that (ni>o~-l/q, q~O,  for all i>~l, so that 
equality in Eqs. (3.31) and (4.2b) holds asymptotically in this case. 

Zeroth Run. The zeroth run differs in character from all the sub- 
sequent runs and the bound obtained in Eq. (3.42) is in practice, unfor- 
tunately, not so strong. For strictly periodic distributions, for instance, it 
can be shown that the equality sign holds only for a very special type of 
random walk, which we have called "indifferent" with respect to the unit 
cell, and that for most other random walks the bound is numerically rather 
weak when the unit cell is large. Moreover, for the random distribution it is 



Random Walks on Lattices w i t h  Points of  T w o  Colors. II. 49 

known that (no>0 ~ - 1 / ( 1 -  F)q,  q ~ 0, for transient random walks, where 
F is the (total) probability of return to the origin (in the absence of traps), 
and thus for small q the bound is in this case "off" by a factor 1 / ( 1 -  F). 

Our result for the zeroth run becomes more transparent when we 
rewrite Eq. (3.42) as an inequality relating two conditional averages: 

(n  o JW> ~> (n 1 -  1 JBW~ (5.l) 

Here Eq. (1.3) is used and W (BW) is a condition on the first (two) 
color(s) encountered by the walker. Returning to our example of a simple 
random walk on a unit cell with clusters of black points, we see that 
Eq. (5.1) is quite clear: when the walker may start anywhere in the sea of 
white points it takes him longer to reach a black point than when he must 
first step on a black point, next step to a white point and then start to go 
for a black point, simply because in the latter case he starts next to a 
cluster. In the general case Eq. (5.1) comes from the fact that (i) different 
white points may have different environments, (ii) white points in certain 
environments are more easily hit from a black point than others, (iii) those 
white points which are most easily hit are also the ones from which a run 
takes shortest. This is very similar to what we listed earlier with respect to 
the behavior of the other runs. It now also becomes clear why our bound is 
not so strong when q is small: in the case of a strictly periodic distribution, 
for instance, black points do but white points generally do not have the 
same environment, and in particular when the unit cell is large (and hence 
(n0)0 large) this will have a substantial effect. Equation (5.1) tends to 
become better as q increases. Thus it remains a challenge for the zeroth run 
in particular to look for ways of obtaining a better bound. It is amusing to 
note that Eq. (5.1) reduces to an equality for all color distributions which 
are complementary to a strictly or pair-periodic distribution, i.e., obtained 
from the latter ones after changing black into white and vice versa. Note 
also that Eq. (3.42) is the only inequality obtained that depends explicitly 
on ~ and p. 

Fin i t eness  of  M o m e n t s .  A question which we have postponed so 
far is whether or not the averages that we consider are finite [see below 
Eqs. (3.33) and (3.49)]. For periodic distributions all moments are finite 
because of the finite size of the unit cell. For general distributions, however, 
Eq. (1.3) is exceptional in that (n1~1 is the only moment that is always 
finite, and there are examples where a / /other  moments are infinite. In such 
cases the bounds obtained are, of course, trivial though still correct. (It is 
not hard to show that the moments (ni)o ,  i>~ 1, are either all finite or all 
infinite.) As an example, take a simple random walk on Z and let the color 
distribution be such that, loosely described, the lengths of white intervals 
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between black points are independently and identically distributed. Let 
C(m) denote the probability that an interval has length m. We have 
~m C(m)= 1 and Z~mC(m)=q -1, but C is otherwise arbitrary. Follow- 
ing the approach of Ref. 19 it may then be shown that (no>o = 
~,m ( m3 -- m) C(m)/6~,,, mC(m), which can be made infinite by choosing C 
such that Z,~ m3C(m) = oo. It may further be shown that when C is such 
that ~,m m2C(m) = o% also all the next runs have infinite first moment. This 
example is, of course, highly special and it seems reasonable to expect that 
in most cases of physical interest the moments considered are finite. In par- 
ticular for the random distribution one should be able to establish 
finiteness for arbitrary random walk. 

Assumptions Used. The assumption of symmetry of the random 
walk plays a crucial role in most of the present paper. Once the symmetry 
is dropped one may get "wildly varying" results [see the remarks below 
Eq. (3.1a)] and each of the inequalities obtained may be seriously violated. 
To illustrate this let us consider a pair-periodic color distribution. It 
follows from Eqs. (3.20a, b) that T l l  = T22 = 1-T12 = 1 - T21. Since there 
are only two traps in the unit cell it further follows that $11 = $22 (!) [see 
below Eq. (3.27)], and with Eqs. (3.13)-(3.15) and (3.28) this gives 
(hi>o= q I lq(S12_S21)2(Txl_ T12)i 1, i>~ 1 (assume f o =  1). Now for 
symmetric random walks Sl2 = $21 and (he>o= q-l ,  as found earlier. For 
asymmetric random walks, however, we have in general $12 # $2~, so that 
(n l>0<q  -1 and when Tll # T12 also (ni>o<q 1 for all i odd. This is just 
the opposite of what we found in Eq. (3.31). Thus, for our bounds the sym- 
metry is necessary. 

By the translation invariance of ~ and p the sequence of colors 
encountered by the walker is a stationary stochastic process. We have 
derived the results in Ref. 1 on the basis of this property alone, without 
referring to the detailed background of the process, i.e., without using the 
fact that the color sequence is actually constructed from a random walk 
taking place on a stochastically colored lattice. Therefore Eqs. (1.1)-(1.7) 
reflect only this stationarity and, viewed in retrospect, they could also have 
been derived starting from certain theorems on stationary stochastic 
processes known from the mathematical literature. The reader is referred to 
Breiman (22) (Chap. 6) and Berbee (23~ (Chap. 3). 

For the present paper the situation is quite different: in deriving our 
results we have made frequent use of properties of the underlying model 
such as lattice structure, existence of asymptotic density of black points, 
independence of successive steps of the walker, symmetry of steps and 
paths, etc. Therefore the various inequalities obtained in the present paper 
reflect more of the specific features of our model. 
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To conclude the discussion it seems appropriate to ask: "How restric- 
tive are the basic assumptions in our model in view of actual applications?,, 
The model may be used to describe physical processes such as the diffusion 
and trapping of "particles" in a medium with static traps. In such processes 
the translation invariance enters as a very natural assumption: the system, 
though microscopically inhomogeneous, is assumed to be statistically 
homogeneous, and hence homogeneous on a macroscopic level. As to the 
symmetry, this assumption should be realistic for a system without external 
field, where the stepping probability distribution of the "particles" is expec- 
ted to exhibit the symmetries of the underlying lattice structure. 
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